Spectral Affine-Kernel Embeddings
نویسندگان
چکیده
In this paper, we propose a controllable embedding method for highand low-dimensional geometry processing through sparse matrix eigenanalysis. Our approach is equally suitable to perform non-linear dimensionality reduction on big data, or to offer non-linear shape editing of 3D meshes and pointsets. At the core of our approach is the construction of a multi-Laplacian quadratic form that is assembled from local operators whose kernels only contain locally-affine functions. Minimizing this quadratic form provides an embedding that best preserves all relative coordinates of points within their local neighborhoods. We demonstrate the improvements that our approach brings over existing nonlinear dimensionality reduction methods on a number of datasets, and formulate the first eigen-based as-rigid-as-possible shape deformation technique by applying our affine-kernel embedding approach to 3D data augmented with user-imposed constraints on select vertices.
منابع مشابه
Spectral global intrinsic symmetry invariant functions
We introduce spectral Global Intrinsic Symmetry Invariant Functions (GISIFs), a class of GISIFs obtained via eigendecomposition of the Laplace-Beltrami operator on compact Riemannian manifolds, and provide associated theoretical analysis. We also discretize the spectral GISIFs for 2D manifolds approximated either by triangle meshes or point clouds. In contrast to GISIFs obtained from geodesic d...
متن کاملAffine Embeddings of Homogeneous Spaces
Let G be a reductive algebraic group and H a closed subgroup of G. An affine embedding of the homogeneous space G/H is an affine G-variety with an open G-orbit isomorphic to G/H . The homogeneous space G/H admits an affine embedding if and only if G/H is a quasi-affine algebraic variety. We start with some basic properties of affine embeddings and consider the cases, where the theory is well-de...
متن کاملPseudo affine Wigner distributions: definition and kernel formulation
In this paper, we introduce a new set of tools for time-varying spectral analysis: the pseudo affine Wigner distributions. Based on the affine Wigner distributions of J. and P. Bertrand, these new time-scale distributions support efficient online operation at the same computational cost as the continuous wavelet transform. Moreover, they take advantage of the proportional bandwidth smoothing in...
متن کاملAffine embeddings of (0, α)-geometries
It is the purpose of this research note to give an overview of the recent results on full embeddings of (0, α)-geometries in affine spaces.
متن کاملKernel-Based Just-In-Time Learning for Passing Expectation Propagation Messages SUPPLEMENTARY MATERIAL A MEDIAN HEURISTIC FOR GAUSSIAN KERNEL ON MEAN EMBEDDINGS
In the proposed KJIT, there are two kernels: the inner kernel k for computing mean embeddings, and the outer Gaussian kernel κ defined on the mean embeddings. Both of the kernels depend on a number of parameters. In this section, we describe a heuristic to choose the kernel parameters. We emphasize that this heuristic is merely for computational convenience. A full parameter selection procedure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. Graph. Forum
دوره 36 شماره
صفحات -
تاریخ انتشار 2017